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o Z i3 Theory of rumour spreading in complex social networks

M. Nekovee , Y. Moreno , G. Bianconi and M. Marsili

Physica A: Statistical Mechanics and its Applications, 2007, 374(1): 457-470.

They introduced a general stochastic model for the spread of rumours,
and dertved mean-field equations to describe the dynamics of the model on

complex social networks.
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Daley and Kendall [7,8]
Ilgnorants: who are ignorant of the rumour;
Spreaders: who have heard it and actively spread it;

Stiflers: who have heard the rumour but have ceased to spread it.
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The contacts between the spreaders and the rest of the population are governed by the following

set of rules:
e Whenever a spreader contacts an ignorant, the ignorant becomes an spreader at a rate A.

e When a spreader contacts another spreader or a stifler the initiating spreader becomes a stifler at

a rate a.
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Ilgnorant Spreader

Undirected social interaction network: G = (V, E)
V: vertices; E: edges

Whenever a spreader contacts an ignorant,

the ignorant becomes an spreader at a rate A.
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Interactive Markov chain mean-field equations

I(k,t+At)-1(k,t)=—1I(k, t)[l - [l —AALY Pl 1 k)o* (', t)}]

= —1(k.RAATY. P(K | K)o (K 1)+ O(AF )

o' t) (kA3 Pl 1Ko (k1)
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The non-trivial solution of this equation is given by:

N A(RY) — 5
= NEERY) (B + Al (RN (28)

Poo

Noting that {({k)) = (k?)/{k) and {({k?)) = (k3)/({k) we obtain:

2(k) (EIX — ) ¢, >0 A S (k)
),< i 5_

AR+ 2arD

Poo
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In particular, for homogeneous networks where all the moments of
the degree distribution are bounded, we can expand the exponential in
Eq. (32) to obtain

2(k)2()\ — o)
A(K3) (Ao + 2a0)

R=~>" P(k)Aktoo =
k



OO0 02 0> 03 035 04 045 05 O 01505 '0;35‘013‘0.135‘0.'4'o,izs'o,s
Fig. 1 ER network Fig. 3 scale-free networks

The final size of the rumor, R is shown as a function of the spreading rateA.
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Conclusions

We used an Interactive Markov Chain formulation of the model to derive
deterministic mean-field equations for the dynamics of the model on complex
networks.

Our results show the presence of a critical threshold in the rumour spreading
rate below which a rumour cannot spread in ER networks.

Our results show that the impact of assortative degree correlations on the
speed of rumour spreading on SF networks.
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o FRATWEIC : Activity of nodes reshapes the process of the spreading
dynamics in complex networks

e LiuC, Zhou L, Fan C,Huo L et al. Physica A: Statistical Mechanics and its
Applications, 2015, 432: 269-278 .

o We investigate spreading dynamics on complex networks with active

nodes based on SIR (Susceptible—Infected—Removed) model.
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Many natural or social phenomena can be explained by spreading
dynamics, such as spreading of infection diseases, computer virus,

rumors, scientific ideas, human behaviors, etc

Studies on spreading dynamics originated from investigations of
epidemic of infection disease, in which disease is transmitted from one

individual to another through interactions between them.
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{Introduction

e Kermack and McKendrick first proposed a mathematical model [7]

Susceptible Infected Removed
( dA.S ()
= —AS () I (z
P () 7(2)
) dcli(tt) — AS(( I () — ST
d R(2)
— S1 (z
- )
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Rules:

A susceptible node change into an infected one when items (infectious
disease, messages or rumors) are transmitted from other infected nodes
through links between them with infection rate A, and an infected node become

removed with rate 0 as it no longer has transmission ability
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Others studies of epidemic infection
e [8] R. Pastor-Satorras

Epidemic processes in complex networks, arXiv:1408.2701. URL.:
http://arxiv.org/abs/1408.2701.

e [9] R. Pastor-Satorras

Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001) 3200-3203.
http://dx.doi.org/10.1103/ PhysRevLett.86.3200.

e [22] S. Boccaletti, G. Bianconi, R. Criado,

The structure and dynamics of multilayer networks, Phys. Rep. 544 (1) (2014) 1-122.
http://dx.doi.org/10.1016/j.physrep.2014.07.001.
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A limit of these models lies in the neglect of individual activity in networks.

e [28] N. Perra, B. Gonalves, R. Pastor-Satorras,

Activity driven modeling of time varying networks, Sci. Rep. 2 (2012) 4609.
http://dx.doi.org/ 10.1038/srep00469.

e [29]S. Liu, N. Perra, M. Karsai, A. Vespignani,

Controlling contagion processes in activity driven networks, Phys. Rev. Lett.
112 (2014) 118702. . doi.org/10.1103/PhysRevlLett.112.118702.
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e Contributions

e We utilize a simple model to investigate the impact of node activity on spreading

dynamics.

e We introduce an activity rate to characterize the interaction pattern of individuals.

e During each time step, an active node interacts with all its neighbors, while an inactive

node can only be interacted by its active neighbors.

e By using a mean-field approach and numerical simulations of SIR model on scale-free

networks.

e It shows that activity rate reshapes the critical threshold of spreading dynamics, and

bring a nonlinear impact on spreading speed and final size of the spreading.
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e The rest of this paper is organized as follows.
e In Section 2 we describe our model of spreading dynamics on networks with active nodes.

e In Section 3, a mean-field analysis of this model is given, and the corresponding equations

are derived to explain the impact of node activity on critical threshold and spreading scale.

e This is followed in Section 4 by numerical investigations to validate the theoretical findings in

Section 3.

e We conclude this paper in Section 5.
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2 A Model
Susceptible Infected Removed

Undirected social interaction network: G = (V, E)
V: vertices; E: edges

Whenever a spreader contacts an ignorant,
the ignorant becomes an spreader at a rate
A.
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2 A Model

A node could be in active state with rate a and in inactive state with rate 1 — a

Susceptible Infected Removed
Sa Sd Ia Id Ra Rd
K_Y_)
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2 A Model

Rules: (About the activity)

An active susceptible node interacts with all its neighbors, and become an
active infected one with probability A when connect with infected neighbors
whether they are active or not. Yet, an inactive susceptible node can only be
interacted by its active neighbors, and become an inactive infected one with

same probability A.
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the probability of a node to stay in active
susceptible state;

Transition probability from active susceptible
state to active infected state

the probability of a node to stay in inactive
susceptible state;

transition probability from inactive susceptible
state to inactive infected state
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2 A Model

Rules: (About the activity)

An active susceptible node interacts with all its neighbors, and become an
active infected one with probability A when connect with infected neighbors
whether they are active or not. Yet, an inactive susceptible node can only be
interacted by its active neighbors, and become an inactive infected one with

same probability A.
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3 Theoretical analysis

In active susceptible state, node i can be infected by any

infected neighbor with probability A E’i':‘
tis = (1 — AAD)...(1— AA?) = (1— AA?)® 2

fés the probability that this node 7 stays in the susceptible state in the time

interval /7, t+ At/,

¢, the probability that it makes a transition to the infected state. .

_ o) the number of neighbors of node j which are in the infected state at
g=8® time ¢

Where t;] — 1 — t;S — 1 — (1 — lAt)g
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3 Theoretical analysis

A node i has k links, g can be considered as an stochastic variable

which has the following binomial distribution:

P(X =g)=Tl(g.t)=CFfO*(1—-0) = \

0 =0(k,t) the probability at time t that an edge emanating from an L&

susceptible node with k links points to a infected node.

O(k,1) =ZP(k'|k)P(1kv | Se) = ZP(k'Ik),OI(k'J)
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Probabilities of an active susceptible node i with degree k at time t for arbitrary g are
k .
t;S — Zt;SP(X =g)
g=0
k
=D CO*(1—) " *(1—AAr)*
g=0

tg] — l_tgs
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In inactive susceptible state, node i can be infected by its active infected neighbors
k
P(X =h)=)_CH(OY' Q-0
g=0

0'(k,t) = ZP(/C' [P | S) = ZP(/C' [K)p" (k',0) = ZP(/C' | k)’ (k1)

0'(k,t) =
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B

Probabilities of an inactive node i with degree k at time t for arbitrary h are

k
=> 1, P(X =h)
h=0

— Zk: C'(a@0)' (1—aB) "1 — AAr)"
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3 Theoretical analysis

The probability of a susceptible node i with degree k to stay in susceptible
state attime tis

to = ati +(1—a)td

—ach(e)g(l af) 2 (1- A% +(1- a)ZCh(aé?) (1-ad) " (1- A1)

g=0

=a[l-AAt)_ P(k'|k)p' (k0] + (1—a)[1—-Aartd P(k'| k)p' (k',0)]"
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3 Theoretical analysis

It is easily to derive the changing rate of susceptible nodes of k-degree
class during [t, t + At] as

S(k.t + At) = S(k. t) — S(k. )(1 — tss)
k
— S(k.t) — aS(k. t)[l _ (1 — At Y PK k)P (K, t)) ]
kl

— (1= a)S(k, t)[] _ (1 —andt 3 PK k)P (K, t))k].
-
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3 Theoretical analysis

We can get corresponding changing rates of infected nodes and removed
nodes during [t, t + At] respectively

Ik.t + At) = I(k. t) + aS(k. t)[l _ (1 — 24t 3" P ko' (K. t))k]
kf
+(1—a)Sk. t)[] _ (1 —ardt Y PK[k)p! (K, t))k] _ At (k. t)
.

R(k,t + At) = R(k,t) +  Atl(k, t).

Where ¢, =1— OAt
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3 Theoretical analysis

We can obtain

8ps(k$ t) . 2 S : Iy /
= —(2a — a*)ako® (k. 1) kZ p' (K, t)P(K'|k).
|

P KD _ e — a)rkpS ik ) 3 0 K, OPK k) — 8" (k, t)
dt -

apR(k, t)

=8p' (k. t).
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3 Theoretical analysis

3.2. Inhomogeneous networks: Critical thresholds of spreading dynamics|on
heterogeneous networks with active nodes

The degree-degree correlations can be written as:

Pk 1 k)=q(k")= kP(k)

< k>

S(k,t ' ield:
pc:t ) — _(2a —a®akpS e 0) Y 'K, 0P K. CaN be integrated exactly to yield:

o> (k. t) = e—”—"?ﬁ‘@mu , Where ¢(t) =), kP(k) f‘ (k. t')d
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3 Theoretical analysis

By multiplying Eq. (12) with kP(k) and summing over k, we can get

do(t)

= Y kP(k)(1— p*(k, 1)) — 86 (t)
k

, (16)
(2o —a<)rk

= (k) — ) kP(kye ™ Y _5p(t).
k

In the limit t — ~we have d¢/dt = 0, and Eq. (16) becomes

(k) — d¢(00) = Z kP (k) e T 9() (17)
k
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20—02))1(
(k) — 8¢ (00) = Y kP(kye T+ (17)
k

The @(«) in Eqg. (17) cannot be solve exactly, but existence condition of non-zero
solution for @(«) is

§ 2« —a? (k¥

Let & = 1, we can get the critical threshold of infection rate of the spreading
dynamics

1 (k)
:201—a2(k2) or o=1-[1—-——

A



3 Theoretical analysis

The final size of spreading dynamics with critical infection rate and activity
rate. By expanding exponential function of Eq. (17) to second order, we can
get the approximate value of ¢(),
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3 Theoretical analysis

Consider that p'(k,») — 0, the final size of the spreading dynamic R =
PpR(=) can be represented as

212
R=1-p°(c0) R~ 25— o)k (1 —i)
_ h
=y LT U T



_ _ D . RN —— -
4. Numerical simulations -4
[ X )
[ J

Generalized scale-free network

P(k) = (1 4+ y)m"7k 27 wherewe fixy = landm = 1

.0

08

0.6
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0.0
0.0 0.2 0.4 0.6 0.8

-4 0.6

0.4

0.2

0.1

0.0

Fig. 2. Critical phenomenon of final size of spreading dynamic R with different A and « (colors represent final size of the spreading dynamics). Solid
line corresponds the critical curve » = (k)/(k*) - 1/(2a — ). Horizontal dashed line corresponds 7 =
a = /1 — (k)/(k?). The figure is obtained by averaging 50 numerical simulations for each point in the grid 40 x 40. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

(k)/{k*), and vertical dashed line corresponds
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) 4. Numerical simulations
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Fig. 3. The final size of spreading dynamics R is shown as function of infection rate A for several values of activity rate «. Inset shows the exponential
correlation of R and 1/x when « is greater than critical threshold c..
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Fig. 4. The final size of spreading dynamics R is shown as function of activity rate « for several values of infection rate A. Inset shows the exponential
correlation of R and 1/(2« — «?) when A is greater than critical threshold ..



R(t)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

00

T
m [ X i 3@ = > % wsmgps
{@l w v of s for & T

) 4. Numerical simulations

A

1

Fig. 5. Time evolution of the fraction of removed nodes when the dynamics starts with a random infected node for several values of activity rate «. The

infection rate is fixed with A = 0.8.
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Fig. 6. Time evolution of the fraction of infected node for same network, model parameters and initial conditions as in Fig. 5.
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5 Conclusions

Our model incorporates an activity rate for each node of the network.l With
this activity rate, a susceptible node can be infected through interactions with
infected neighbors under two kinds of situations.

The critical threshold of infection rate is increased by node activity.

The final size and increment speed of the spreading dynamics are
significantly impacted by activity rate.
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Mean SD 1 2 3 1
1. Work intensification 3.64 0.95
2. Work addiction 285 0.86 024+
3. Seeking resources 370 065 —0.07 0.14 *
4. Crafting towards strengths 375 0.66  —0.08 013*  061*
5. Workplace well-being 352 0.83 —020* 029* 049* 046*

Note: *p < 0.05, ** p < 0.01 (two-tailed tests).
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° Work Intensification

o Work intensification was measured with 4 items derived from the scale
of intensification of job demands [1]. These items attempt to assess the
degree to which the amount of eort one needs to put into in daily work
increases, such as the need to work with accelerated speed or perform
diverse tasks concurrently. A 5-point Likert-type scale was used (1 = strongly
disagree to 5 = strongly agree), reliability coecient = 93. The sample items
include ‘it is increasingly rare to have enough time for work tasks’ and ‘it is

increasingly harder to take time for breaks’.
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Work Addiction

Work addiction was measured using 7 items from the Bergen Work
Addiction Scale [41] as an indication of the degree to which one feels

compelled or an uncontrollable urge to work without relief.

A 5-point Likert-type scale was used (1 = strongly disagree to 5 = strongly
agree), reliability coecient = 0.89. The sample items include ‘Spent much
more time working than initially intended’ and ‘Become stressed if you have

been prohibited from working'.
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e Workplace Well-Being

e Workplace well-being was measured using 5 items from Zhang et al. [57]. A 5-point
Likert-type scale was used (1 = strongly disagree to 5 = strongly agree), reliability
coecient = 0.86. The sample items include ‘|l find real enjoyment in my work’ and

‘Work is a meaningful experience for me’.
e Seeking Resources

e This measure was made up of 4 items from the short version scale of job crafting
[17], and this scale was also used and validated in the study of Petrou et al. [47]. A 5-
point Likert-type scale was used (1 = strongly disagree to 5 = strongly agree),
reliability coecient = 0.82. The sample items include ‘I ask colleagues for advice’ and

‘| ask my supervisor for advice’.
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e Crafting Towards Strengths

e This measure consisted of 3 items from the scale developed by Kooij et al. [22]. The
answering categories ranged from 1 (strongly disagree) to 5 (strongly agree),
reliability coecient = 0.87. The sample items include ‘In my work tasks | try to take
advantage of my strengths as much as possible’ and ‘I look for possibilities to do my

tasks in such a way that it matches my strengths’.
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