INTERNATIONAL JOURNAL OF BIOMATHEMATICS

Vol. 10, No. 7 (October 2017)

CONTENTS

Research Articles	
A shifted Legendre method for solving a population model and delay linear Volterra integro-differential equations Ş. Yüzbaşi	1750091
Modeling of cognitive brain activity through the information images theory in terms of the bilingual Stroop test A. Y. Petukhov and S. A. Polevaya	1750092
Dynamical properties of a kind of SIR model with constant vaccination rate and impulsive state feedback control H. Guo, L. Chen and X. Song	1750093
Analysis of a system of autonomous fractional differential equations $X.\ Zhou\ and\ C.\ Xu$	1750094
Comparative studies for the fractional optimal control in transmission dynamics of West Nile virus N. H. Sweilam, O. M. Saad and D. G. Mohamed	1750095
Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology M. A. Khan, Y. Khan, T. W. Khan and S. Islam	1750096
The PCA index for measuring functional diversity and its application to Juglans mandshurica communities in the Beijing mountains, China N. Song, JT. Zhang and F. Zhao	1750097
A numerical method for the solutions of the HIV infection model of CD4 ⁺ T-cells S. Yüzbaşı and N. Ismailov	1750098

(Continued)

Covered in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews

CONTENTS — (Continued)

Mathematical and numerical analysis of thermal distribution in cancerous tissues under the local heat therapy M. A. Khanday and K. Nazir	1750099
Global stability for an influenza transmission model incorporating human mobility behavior Y. Cai and W. Wang	1750100
Qualitative analysis of a predator–prey model with rapid evolution and piecewise constant arguments L. Wang	1750101
Blow-up for the solutions to nonlinear parabolic–elliptic system modeling chemotaxis $Z.$ Huang and $J.$ Zhu	1750102
Numerical solutions of stochastic Fisher equation to study migration and population behavior in biological invasion S. Singh and S. Saha Ray	1750103
Control strategies of avian influenza pandemic model with time delay U. Roman, Z. Gul, I. Saeed, U. Hakeem and S. Shafie	1750104
Sensitivity analysis for stochastic and deterministic models of nascent focal adhesion dynamics H. R. Biegel, A. Quackenbush and H. C. Highlander	1750105

International Journal of Biomather Vol. 10, No. 7 (2017) 1750091 (18 p © World Scientific Publishing Con DOI: 10.1142/S1793524517500917

> A shifted Legendre and delay linear

> > Departmen

In this paper, we propose a configuration of a population model and the method is based on the shifted ations and collocation points, transformed into a matrix equilinear algebraic equations. Als ment of solutions is presented in model and general delay integrated and general delay integrated with the known rest

Keywords: Population model; endre polynomials; matrix met

Mathematics Subject Classific

1. Introduction

Integral and integro-differential areas including biology, physical In this study, we consider a models include only females a

and

$$B(t) =$$

where

$$K(t,x) = K(t-x)$$
: net mat