INTERNATIONAL JOURNAL OF BIOMATHEMATICS

Vol. 10, No. 6 (August 2017)

CONTENTS

Research Articles		
Asymptotic dynamics of a modified discrete Leslie–Gower competition system Y. Chow and S. RJ. Jang		1750076
On a non-autonomous reaction—convection diffusion model to study the bacteria distribution in a river I. M. Mostefaoui and A. Moussaoui		1750077
Wright–Fisher-like models with constant population size on average N. Grosjean and T. Huillet	à	1750078
Bifurcation and spatiotemporal patterns of a density-dependent predator—prey model with Crowley—Martin functional response M. Sivakumar, K. Balachandran and K. Karuppiah		1750079
Application of homotopy perturbation method to solve two models of delay differential equation systems §. Yüzbaşi and M. Karaçayir		1750080
A spatial echinococcosis transmission model with time delays: Stability and traveling waves Z . Xu and C . Ai		1750081
Parameter uncertainty in biomathematical model described by one-prey two-predator system with mutualism D. Pal, G. S. Mahapatra and G. P. Samanta		1750082
An age-structured model of the human papillomavirus dynamics and optimal vaccine control		1750083

(Continued)

M. Al-Arydah and T. Malik

Covered in Science Citation Index Expanded (also known as SciSearch[®]), Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews

CONTENTS - (Continued)

A model of cholera transmission with hyperinfectivity and its optimal vaccination control $C.\ Modnak$	1750084
Mathematical and computational analysis of CRISPR Cas9 sgRNA off-target homologies M. Zhou, D. Li, X. Huan, J. Manthey, E. Lioutikova and H. Zhou	1750085
Traveling wave solutions for a diffusive predator–prey model with predator saturation and competition $L.\ Zhu\ and\ SL.\ Wu$	1750086
Comparison between chikungunya and dengue viruses transmission based on a mathematical model $\it H.\ M.\ Yang$	1750087
Modeling the effects of cross-protection control in plant disease with seasonality S. Gao, L. Xia, J. Wang and Z. Zhang	1750088
Dynamics and bifurcations of a host–parasite model A. Atabaigi and M. H. Akrami	1750089
Stability and ergodicity of a stochastic Gilpin–Ayala model under regime switching on patches $A.\ Settati\ and\ A.\ Lahrouz$	1750090

International Journal of Biomathema Vol. 10, No. 6 (2017) 1750076 (23 pag © World Scientific Publishing Comp DOI: 10.1142/S1793524517500760

> Asymptotic d Leslie-G

> > Institute of

Departme Texas Tech Uni

We propose a modified discrete tions to study competition outco parameter that measures intrasp population, either one or both posystem can have up to four coexitive maps, it is shown that the outcomes then depend not only initial population distributions.

Keywords: Competition; saddle

Mathematics Subject Classificat

1. Introduction

Discrete-time models of different lations with non-overlapping geare the two well-known examp population dynamics [2]. Althodecreasing functions of the popble competition while the Bever individuals of the same popular cascade of period-doubling bifupossesses only simple equilibrium.

Based on these two classic tems developed to model popul