Contents

Issue 1

List of reviewers		

Articles

Development of building energy asset rating using stock modelling in the USA	
Na Wang, Supriya Goel, Atefe Makhmalbaf and Nicholas Long	

Performance of a reversible ne	at pump/organic Kankine cycle unit coupled with a passive house to	
get a positive energy building		
Olivier Dumont, Carolina Carmo,	Valentin Fontaine, François Randaxhe, Sylvain Quoilin, Vincent Lemort,	

Brian Elmegaard and Mads P. Nielsen	15

A Bayesian network model for the optimization of a chiller plant's condenser water set point	
Sen Huang, Ana Carolina Laurini Malara, Wangda Zuo and Michael D. Sohn	3

Validated air handling unit model using indirect evaporative cooling	317	
F. Jorissen, W. Boydens and L. Helsen		48

The reliability of inverse modelling for the v	vide scale characterization of the thermal
properties of buildings	

Alfonso P. Ramallo-González, Matthew Brown, Elizabeth Gabe-Thomas, Tom Lovett and David A. Coley	6
TEASER: an open tool for urban energy modelling of building stocks	

Peter Remmen, Moritz Lauster. Michael Mans, Marcus Fuchs, Tanja Osterhage and Dirk Müller	8
Fact and self-learning indoor airflow simulation based on in situ adaptive tabulation	

Wei Tian, Thomas Alonso Sevilla, Dan Li, Wangda Zuo and Michael Wetter	91
A new local pressure loss coefficient model of a duct tee junction applied during transient simulation of a HVAC air-side system	
Qiujian Wang, Yiqun Pan, Mingya Zhu, Zhizhong Huang and Peng Xu	113

Issue 2

Articles

Stable explicit schemes for simulation of nonlinear moisture transfer in porous materials	
Suelen Gasparin, Julien Berger, Denys Dutykh and Nathan Mendes	1

Mutuscate modeling of in-room temperature distribution with numan occupancy data:	
a practical case study	
Vahai Kana Vashihika Susuki, Mitsupari Hayashida, Inor Mazić and Takashi Hikibara	17

roner kono, rosminko susuki, misunuri nayasinda, igor mezic anu takasin rikinara	14
A multiple model approach for predictive control of indoor thermal environment with high resolution	

A multiple model approach for predictive control of model thermal environment with high resolution	
Kangji Li, Xue Wenping, Chao Xu and Hanping Mao	16

A multi-scale homogenization approach for the effective thermal conductivity of dry	
lime-hemp concrete	
T Navyan-Sy A D Tran-Le T Navyan-Thoi and T Langlet	170

Experimental validation and model development for thermal transmittances of porous	
window screens and horizontal louvred blind systems	
Pakeet Unet House Courtey and D. Charlie Currier	15

Simulation model to find the best comfort, energy and cost scenarios for building refurbishment	
Antoni Fonseca i Casas, Joana Ortiz, Núria Garrido, Pau Fonseca and Jaumé Salom	20
Antenn Fondacti i obdeta, Johna of tiz, Haria obi Flag, Fad Fondacti ene John Coloria	

Numerical estimation and sensitivity analysis of the energy demand for six industrial	
buildings in France	

Matthieu Labat and Kévin Attonaty		-	22
TOTAL STREET, CANADA	10	The second secon	

Scale-adaptive simulation of unsteady flow and dispersion around a model building
spectral and POD analyses
Mohammad Jadidi, Farzad Bazdidi-Tehrani and Mohsen Kiamansouri

113

