

MARCH 2015

VOLUME 29 ISSUE 3

ENFUEM 29(3) 1269-2042 (2015) ISSN 0887-0624

Registered in the U.S. Patent and Trademark Office

© 2015 by the American Chemical Society

ON THE COVER: On the left is a synchrotron-based three-dimensional microtomography image of cotton hull before pyrolysis (top) and after pyrolysis (bottom). This is the first application of this technique to image such materials, which are relevant for biofuel production and agricultural applications. On the right is a two-dimensional cross-section of the previous three-dimensional reconstruction. See Keith Jones, Girish Ramakrishnan, Minori Uchimiya, and Alexander Orlov, p 1628.

Reviews

1269

DOI: 10.1021/ef502299k

Treatment of Waste Gases by Humic Acid Zhiguo Sun,* Bo Tang, and Hongyong Xie

1279

DOI: 10.1021/ef502548x

Interactions of Illinois No. 6 Bituminous Coal with Solvents: A Review of Solvent Swelling and Extraction Literature Jonathan P. Mathews,* Caroline Burgess-Clifford, and Paul Painter

Articles

Fossil Fuels

1295

DOI: 10.1021/acs.energyfuels.5b00033

Pores in Marcellus Shale: A Neutron Scattering and FIB-SEM Study Xin Gu,* David R. Cole, Gernot-Rother, David F. R. Mildner, and Susan L. Brantley

1309

DOI: 10.1021/ef501242k

Structural Comparison of Asphaltenes of Different Origins Using Multi-stage Tandem Mass Spectrometry
Weijuan Tang, Matthew R. Hurt, Huaming Sheng, James S. Riedeman, David J. Borton, Peter Slater, and Hilkka I. Kenttämaa*

1315

DOI: 10.1021/ef501856w

Chemical Aspects of Onshore Crude Oils from the Carmópolis Field, Sergipe-Alagoas Basin, Brazil: A Case Study on the Industrial Process for Water-Oil Separation

Jandyson M. Santos, Flávia M. L. Santos, Rennan G. O. Araujo, Anselmo Carvalho Lessa, Jomery Pereira de Souza, Marlon José dos Santos, and Alberto Wisniewski Jr.*

1323

6

DOI: 10.1021/ef502335b

High Resolution Mass Spectrometric View of Asphaltene—SIO₂ Interactions
Martha L. Chacón-Patiño, Cristian Blanco-Tirado, Jorge A. Orrego-Ruiz, Andrea Gómez-Escudero, and Marianny Y. Combariza*

-

Energy & Fuels, Volume 29, Issue 3

Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China Guangyou Zhu, Haiping Huang,* and Huitong Wang

1345

0

DOI: 10.1021/ef502350n

Thermal Properties of a Supercooled Synthetic Sand-Water-Gas-Methane Hydrate Sample Michihiro Muraoka, Naoko Susuki, Hiroko Yamaguchi, Tomoya Tsuji, and Yoshitaka Yamamoto*

6 1352

DOI: 10.1021/ef5023847

Insights into the Mechanism of Wettability Alteration by Low-Salinity Flooding (LSF) in Carbonates Hassan Mahani,* Arsene Levy Keya, Steffen Berg, Willem-Bart Bartels, Ramez Nasralla, and William R. Rossen

1368

DOI: 10.1021/ef502392g

Hydrophilic Nanoparticles Facilitate Wax Inhibition Fei Yang, Kristofer Paso,* Jens Norrman, Chuanxian Li, Hans Oschmann, and Johan Sjöblom

1375

DOI: 10.1021/ef502402e

Pore Architecture and Connectivity in Gas Shale Hubert E. King Jr.,* Aaron P. R. Eberle, Clifford C. Walters, Chris E. Kliewer, Deniz Ertas, and Chuong Huynh

DOI: 10.1021/ef502450w

Distribution and Identification of Chlorides in Distillates from YS Crude Oil Bencheng Wu.* Yongfeng Li, Xiaohui Li, and Jianhua Zhu

1397

DOI: 10.1021/ef502494d

Adsorption and Removal of Asphaltene Using Synthesized Maghemite and Hematite Nanoparticles Nazila Naghdi Shayan and Behruz Mirzayi*

1407

DOI: 10.1021/ef502511t

Mineralogical and Elemental Analysis of Some High-Sulfur Indian Paleogene Coals: A Statistical Approach Binoy K. Saikia,* Peipei Wang, Ananya Saikia, Hongjian Song, Jingjing Liu, Jianpeng Wei, and Upendra N. Gupta

1421

DOI: 10.1021/ef502558a

Qualitative and Quantitative Analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in Crude Oils and Source Rock Extracts

Meijun Li* and Geoffrey S. Ellis

DOI: 10.1021/ef5025559 1438

Microfracture and Surfactant Impact on Linear Cocurrent Brine Imbibition in Gas-Saturated Shale Yongpeng Sun, Baojun Bai,* and Mingzhen Wei

Hugo T. S. Braibante, Daiane Dias, Margareth Cravo, and Leni F. M. Leite

Leandro M. de Carvalho,* Paulo C. do Nascimento, Denise Bohrer, Luís E. Claussen, Luis Ferraz, Carla Grassmann,

1447

DOI: 10.1021/ef502586q

Diffusion Model Coupled with the Flory-Huggins-Zuo Equation of State and Yen-Mullins Model Accounts for Large Viscosity and Asphaltene Variations in a Reservoir Undergoing Active Biodegradation Julian Y. Zuo,* Richard Jackson, Ankit Aganwal, Bernd Herold, Sanjay Kumar, Ilaria De Santo, Hadrien Dumont, Cosan Avan.

Martyn Beardsell, and Oliver C. Mullins

1461

DOI: 10.1021/ef502600t

Global Kinetic Modeling of Coal Devolatilization in a Thermogravimetric Balance and Drop-Tube Furnace Olivier Authier,* Emmanuel Thunin, Pierre Plion, and Lynda Porcheron

1469

DOI: 10.1021/ef5025998

High-Pressure Redox Behavior of Iron-Oxide-Based Oxygen Carriers for Syngas Generation from Methane Niranjani Deshpande, Ankita Majumder, Lang Qin, and L.-S. Fan*

1479

DOI: 10.1021/ef502608y

Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions Aaron D. Lewis, Troy M. Holland, Nathaniel R. Marchant, Emmett G. Fletcher, Daniel J. Henley, Eric G. Fuller, and Thomas H. Fletcher®

1494

DOI: 10.1021/ef502616v

Addition Reactions of Olefins to Asphaltene Model Compounds Samuel D. Cardozo, Matthias Schulze, Rik R. Tykwinski, and Murray R. Gray*

1503

DOI: 10.1021/ef502640p

Inorganic Matter Behavior during Coal Gasification: Effect of Operating Conditions and Particle Trajectory on Ash Deposition and Slag Formation

Seyyedali Hosseini and Rajender Gupta*

DOI: 10.1021/ef502638c

Opportunity to Improve Diesel-Fuel Cetane-Number Prediction from Easily Available Physical Properties and Application of the Least-Squares Method and Artificial Neural Networks

Dicho Stratiev, * Ivaylo Marinov, Rosen Dinkov, Ivelina Shishkova, Ilian Velkov, Ilshat Sharafutdinov, Svetoslav Nenov, Tsvetelin Tsvetkov, Sotir Sotirov, Magdalena Mitkova, and Nikolay Rudnev

1534

DOI: 10.1021/ef502696p

Association Model for Nickel and Vanadium with Asphaltene during Solvent Deasphalting Chuanbo Yu, Linzhou Zhang, Xiuying Guo, Zhiming Xu, Xuewen Sun, Chunming Xu, and Suoqi Zhao*

1543

DOI: 10.1021/ef502707w

Catalytic Cracking of Heavy Aromatics and Polycyclic Aromatic Hydrocarbons over Fluidized Catalytic Cracking Catalysts Richard Puiro, Marisa Falco,* and Ulises Sedran

1550

DOI: 10.1021/ef502718s

Effects of Coal Functional Groups on Adsorption Microheat of Coal Bed Methane Fubao Zhou,* Shiqi Liu, Yeqing Pang, Jianlong Li, and Haihui Xin

1558

DOI: 10.1021/ef502736a

Study on the Use of the Thermal Dissolution Soluble Fraction from Shenfu Sub-bituminous Coal in Coke-Making Coal

Hengfu Shui,* Fartg He, Ye Wu, Chunxiu Pan, Zhicai Wang, Zhiping Lei, Shibiao Ren, and Shigang Kang

1564

DOI: 10.1021/ef5027407

Influence of Crude Oil Components on Interfacial Dilational Properties of Hydrophobically Modified Polyacrylamide Song-Shuang Hu, Lei Zhang, Xu-Long Cao, Lan-Lei Guo, Yang-Wen Zhu, Lu Zhang,* and Sui Zhao*

DOI: 10.1021/ef502739k

Porosity and Structure Evolution during Coal Pyrolysis in Large Particles at Very Slow Heating Rates Keith W. Gneshin, Robert L. Krumm, and Eric G. Eddings*

1590

DOI: 10.1021/ef502761d

In Situ Catalyzing Gas Conversion Using Char as a Catalyst/Support during Brown Coal Gasification Yong-Gang Wang,* Jia-Liang Sun, Hai-Yong Zhang, Zong-Ding Chen, Xiong-Chao Lin, Shu Zhang, Wei-Bo Gong, and Mao-Hong Fan

1597

DOI: 10.1021/ef502766v

Coarse-Grained Molecular Simulations to Investigate Asphaltenes at the Oil-Water Interface Yosadara Ruiz-Morales* and Oliver C. Mullins

1610

DOI: 10.1021/ef502786e

Influence of Asphaltene Aggregation on the Adsorption and Catalytic Behavior of Nanoparticles Camilo A. Franco, Nashaat N. Nassar,* Tatlana Montoya, Marco A. Ruíz, and Farid B. Cortés*

1622

DOI: 10.1021/ef5028235

Optical Characterization of the Principal Hydrocarbon Components in Natural Gas Using Terahertz Spectroscopy Li N, Ge, Hong L. Zhan, Wen X, Leng, Kun Zhao,* and Li Z. Xiao

Biofuels and Biomass

1628 6 DOI: 10.1021/ef5027604

New Applications of X-ray Tomography in Pyrolysis of Biomass: Biochar Imaging Keith Jones, Girish Ramakrishnan, Minori Uchimiya, and Alexander Orlov*

1635

DOI: 10.1021/ef501399d

Comparison between Vapor Generation Methods Coupled to Atomic Absorption Spectrometry for Determination of Hq in Glycerin Samples

Meibel Teixeira Lisboa, Caroline Dutra Clasen, Eliezer Quadro Oreste, Anderson Schwingel Ribeiro, and Mariana Antunes Vieira*

1641

DOI: 10.1021/ef5023779

Digester Gas Upgrading to Synthetic Natural Gas in Solid Oxide Electrolysis Cells Guido Lorenzi,* Andrea Lanzini, and Massimo Santarelli

6 1653

DOI: 10.1021/ef502100f

Life Cycle Assessment of Biofuels from Algae Hydrothermal Liquefaction: The Upstream and Downstream Factors Affecting Regulatory Compliance

Elizabeth B. Connelly, Lisa M. Colosi,* Andres F. Clarens, and James H. Lambert

1662

DOI: 10.1021/ef5022297

Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenois over Raney Ni and Acidic Zeolite Catalysts

Yetao Jiang, Zheng Li, Xing Tang, Yong Sun, Xianhai Zeng,* Shijie Liu, and Lu Lin*

1669

DOI: 10.1021/ef502380x

Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer

Trevor J. Morgan, Anthe George, Aikaterini K. Boulamanti, Patricia Álvarez, Ibtissam Adanouj, Charles Dean, Stanislav V. Vassilev, David Baxter, and Lars Klembt Andersen*

1686

DOI: 10.1021/ef502422t

Cogasification of Australian Brown Coal with Algae in a Fluidized Bed Reactor

Youjian Zhu, Patrycja Piotrowska, Philip J. van Eyk, Dan Boström, Chi Wai Kwong, Dingbiao Wang," Andrew J. Cole, Rocky de Nys, Francesco G. Gentili, and Peter J. Ashman*

Microwave Pyrolysis of Biomass: Control of Process Parameters for High Pyrolysis Oil Yields and Enhanced Oil Quality John Robinson,* Chris Dodds, Alexander Stavrinides, Sam Kingman, Juliano Katrib, Zhiheng Wu, Jose Medrano, and Ralph Overend

DOI: 10.1021/ef502433d

Computational Investigation of Oxygen Concentration Effects on a Soot Mechanism with a Phenomenological Soot Model of Acetone-Butanol-Ethanol (ABE)

Zhichao Zhao, Han Wu, Mianzhi Wang, Chia-Fon Lee,* Jingping Liu, Jianqin Fu, and Wayne Chang

1722

DOI: 10.1021/ef5024669

Coke Deposition on Ni/HZSM-5 in Bio-oil Hydrodeoxygenation Processing Yu Li, Changsen Zhang, Yonggang Liu, Xiaoxue Hou, Rulqin Zhang,* and Xiaoyan Tang

1729

DOI: 10.1021/ef502530q

Lumping Strategy in Kinetic Modeling of Vacuum Pyrolysis of Plant Oil Asphalt Yanyan Zheng, Qiang Tang,* Tiefeng Wang, and Jinfu Wang*

DOI: 10.1021/ef502541r

High Solids Loading Pretreatment of Olive Tree Pruning with Dilute Phosphoric Acid for Bioethanol Production by

José Carlos Martinez-Patiño, Juan Miguel Romero-García, Encarnación Ruiz, José Miguel Oliva, Cristina Álvarez, Inmaculada Romero, María José Negro, and Eulogio Castro*

1743

DOI: 10.1021/ef502517d

Pretreatment of Miscanthus giganteus with Lime and Oxidants for Biofuels Fuxin Yang, Zhongguo Llu, Waheed Afzal, Zhigang Llu, Alexis T. Bell, and John M. Prausnitz*

1751

DOI: 10.1021/ef5026505

Catalytic Pyrolysis of Biomass-Derived Compounds: Coking Kinetics and Formation Network Shanshan Shao, Huiyan Zhang, Yun Wang, Rui Xiao,* Lijun Heng, and Dekui Shen

DOI: 10.1021/ef5025966

1758 Compositional Characterization of Phase-Separated Pine Wood Slow Pyrolysis Oil by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Ilja Miettinen, Marko Mäkinen, Teemu Vilppo, and Janne Jänis*

DOI: 10.1021/ef5026054

Pyrolysis of Red Eucalyptus, Camelina Straw, and Wheat Straw in an Ablative Reactor Beatriz Gómez-Monedero, Fernando Bimbela,* Jesús Arauzo, Jimmy Faria, and M. Pilar Ruiz

DOI: 10.1021/ef5027345

Noncatalytic Gasification of Lignin in Supercritical Water Using a Batch Reactor for Hydrogen Production: An Experimental and Modeling Study

Kang Kang, Ramin Azargohar, Ajay K. Dalai,* and Hui Wang

1785

DOI: 10.1021/ef502750t

High-Temperature Interactions between Molten Miscanthus Ashes and Bed Materials in a Fluidized-Bed Gasifier Judit Kaknics, Rudy Michel, Annie Richard, and Jacques Poirier*

1793

DOI: 10.1021/ef502779s

Hydropyrolysis of Lignin Using Pd/HZSM-5 Oliver Jan, Ryan Marchand, Luiz C. A. Anjos, Gabriel V. S. Seufitelli, Eranda Nikolla, and Fernando L. P. Resende*

DOI: 10.1021/ef502855v

1801 Catalytic Conversion of Biofuel Components: Product Analysis by Multidetector Gas Chromatography Jennifer L. Heelan, Bruce C. Gates,* Susan E. Ebeler,* and David E. Block*

DOI: 10.1021/ef502860v

Further Study on Ash Deposits in a Large-Scale Wastewater Incineration Plant: Ash Fusion Characteristics and Kinetics 1812 Lin Mu, Jingcheng Cai, Jianbiao Chen, Peng Ying, Aimin Li,* and Hongchao Yin

DOI: 10.1021/acs.energyfuels.5b00009

Enhanced 1-Butanol Production in Engineered Klebsiella pneumoniae by NADH Regeneration Miaomiao Wang, Lijuan Hu, Lihai Fan, and Tianwei Tan*

Environmental and Carbon Dioxide Issues

1830

DOI: 10.1021/ef502667d

Gasoline from Coal and/or Biomass with CO₂ Capture and Storage. 1. Process Designs and Performance Analysis Guangjian Liu,* Eric D. Larson, Robert H. Williams, and Xiangbo Guo

1845

DOI: 10.1021/ef502668n

Gasoline from Coal and/or Biomass with CO2 Capture and Storage. 2. Economic Analysis and Strategic Context Guangjian Liu,* Eric D. Larson, Robert H. Williams, and Xiangbo Guo

1860

DOI: 10.1021/ef502092v

Desulfurization Behavior of Fe-Mn-Based Regenerable Sorbents for High-Temperature H₂S Removal Bing Zeng, Hairong Yue, Changjun Liu, Tao Huang, Jing Li, Bin Zhao, Ming Zhang, and Bin Liang*

1868

DOI: 10.1021/ef502194s

Screening of Combined Mn-Fe-Si Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU)
Mehdi Arjmand,* Volkmar Frick, Magnus Rydén, Henrik Leion, Tobias Mattisson, and Anders Lyngfelt

1881

DOI: 10.1021/ef502210z

Synthesis and Characterization of Functionalized Poly(glycidyl methacrylate)-Based Particles for the Selective Removal of Nitrogen Compounds from Light Gas Oil: Effect of Linker Length

Jackson M. Chitanda, Prachee Misra, Ali Abedi, Aiav K. Dalai,* and John D. Adiave

1892

DOI: 10.1021/ef5022686

Green Energy from the Combined Treatment of Liquid and Solid Waste from the Tanning Industry Using an Upflow Anaerobic Sludge Blanket Reactor

E. Ravindranath, K. Chitra, S. Porselvam, S. V. Srinivasan,* and R. Suthanthararajan

1899

DOI: 10.1021/ef502312p

Expansion of Hard Coal Accompanying the Sorption of Methane and Carbon Dioxide in Isothermal and Non-isothermal Processes

Pawel Baran,* Katarzyna Zarebska, and Mirosława Bukowska

1905

DOI: 10.1021/ef502512f

Experimental and Kinetic Study on the Influence of CaO on the $N_2O+NH_3+O_2$ System Shi-long Fu, Qiang Song,* and Qiang Yao

1913

DOI: 10.1021/ef502553x

Oxidation of n-Alkane (n-C₈H₁₈) under Reservoir Conditions, in Context of Gas Mixture Injection (CO₂/O₂): Construction of a Kinetic Model –

C. Pacini-Petitjean, P. Morajkar, V. Burkle-Vitzthum, A. Randi, C. Lorgeoux, D. Morel, J. Pironon, and P. Faure*

1923

DOI: 10.1021/ef502585y

An Environmentally Benign Cycle To Regenerate Chitosan and Capture Carbon Dioxide by Ionic Liquids Xiaofu Sun, *Chengyi Huang, Zhimin Xue,* and Tiancheng Mu*

1931

DOI: 10.1021/ef502655k

Thermal Regeneration of Manganese Supported on Activated Carbons Treated by HNO3 for Desulfurization Yong-Jun Liu, Yi-Fan Qu, Jia-Xiu Guo,* Xue-Jiao Wang, Ying-Hao Chu, Hua-Qiang Yin, and Jian-Jun Li

1941

DOI: 10.1021/ef502682v

Desulfurization Performance of Ether-Functionalized Imidazolium-Based Ionic Liquids Supported on Porous Silica Gel Ying Zhao, Jianying Wang, Haichao Jiang, and Yongqi Hu* 1946

DOI: 10.1021/ef502868s

Effects of Properties of Activated Carbon on Its Activity for Mercury Removal and Mercury Desorption from Used Activated Carbons

Sheng-ji Wu,* Wei Yang, Jie Zhou, Hui Wang, and Zheng-miao Xie

1951

DOI: 10.1021/acs.energyfuels.5b00080

Comprehensive Study of Fe₂O₃/Al₂O₃ Reduction with Ultralow Concentration Methane under Conditions Pertinent to Chemical Looping Combustion

Yongxing Zhang,* Elham Doroodchi, and Behdad Moghtaderi

Catalysis and Kinetics

1961

DOI: 10.1021/ef502415g %

Mutual Inhibition between Catalytic Impurities of Sulfur and Those of Calcium in Coke during Carbon—Air and Carbon—CO₂
Reactions

Jin Xiao, Qifan Zhong,* Fachuang Li, Jindi Huang, Yanbin Zhang, and Bingjie Wang

1972

DOI: 10.1021/ef5026399

Preparation of an Unsupported Iron Fischer—Tropsch Catalyst by a Simple, Novel, Solvent-Deficient Precipitation (SDP) Method

Kyle M. Brunner, Grant E. Harper, Kamyar Keyvanloo, Brian F. Woodfield, Calvin H. Bartholomew, and William C. Hecker*

Combustion

978

DOI: 10.1021/ef501434v

Dynamic Behaviors in Methane MILD and Oxy-Fuel Combustion. Chemical Effect of CO₂ P. Sabia." G. Sorrentino, A. Chinnici, A. Cavaliere, and R. Ragucci

1987

DOI: 10.1021/ef501943v

Numerical and Experimental Studies of NO Formation Mechanisms under Methane Moderate or Intense Low-Oxygen Dilution (MILD) Combustion without Heated Air

Shiying Cao, Chun Zou,* Qingsong Han, Yang Liu, Di Wu, and Chuguang Zheng

1997

DOI: 10.1021/ef502011f

Pyrolysis and Char Characterization of Refuse-Derived Fuel Components
Rita Barros Silva, Susete Martins-Dias, Cristina Arnal, Maria U. Alzueta, and Mário Costa*

2006

DOI: 10.1021/ef502791e

Thermal and Element Analyses for Supercritical RP-3 Surface Coke Deposition under Stable and Vibration Conditions Zhi Tao, Yanchen Fu, Guoqiang Xu, Hongwu Deng,* and Zhouxia Jia

2022

DOI: 10.1021/ef502421k

A Novel Chemical Looping Combustion (CLC)-Assisted Catalytic Naphtha Reforming Process for Simultaneous Carbon Dioxide Capture and Hydrogen Production Enhancement Sajjad Rimaz and Dayood Iranshahi*

0 2034

DOI: 10.1021/ef502444z

Oil Sands Steam-Assisted Gravity Drainage Process Water Sample Aging during Long-Term Storage Matthew A. Petersen,* Claire S. Henderson, Anthony Y. Ku, Annie Q. Sun, and David J. Pernitsky

Supporting Information available via online article

pubs.acs.org/Ef

Treatment of Waste Gases by Humic Acid

Zhiguo Sun,*,† Bo Tang,‡ and Hongyong Xie†

energy fuels

*School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, P. R.

*School of Petroleum Engineering, Changzhou University, Changzhou, Jiangsu 213016, P. R. China

ABSTRACT: Humic acid (HA) is a natural adsorbent and has special physical and chemical characteristics that form the foundation for disposal of pollutants from a combustor flue gas. HA, which occurs widely in soil, water, and low-rank coals, has already been proposed as a candidate that can be used as a sorbent for air pollution control. A flue gas desulfurization and denitrification (FGDD) process employing HA seems like a promising approach. It is a better choice using HA-Na as a desulfurization additive to improve wet limestone scrubbers or other FGDD processes. This paper reviews the recent development of waste gas treatment by HA with special reference to HA for removal of SO₂, NO₂, CO₂, H₂S, and heavy metals.

1. INTRODUCTION

Humic substances (HS) originate from the decay of animals, plants, and other biological activities of microorganisms in the environment, which are widely distributed in water, soil, and low-rank coals. As natural polyelectrolytes, the presence of HS is crucial to preserve the production and quality of soil, remove inorganic pollutants, improve industrial agents, and treat some diseases. Therefore, HS act as a important role in the fields of agriculture, environment, industry, human health, and medicine.

The prominent characteristics of HS have caught the attention of more investigators. Research progress in the exploitation of their physicochemical characteristics and structure has been achieved in the recent decades, and HS have been applied to many practical applications under the guidance of that new knowledge.2 HS are referred to as a black or brown, amorphous, complex heterogeneous mixture of organic substances with similar properties. HS are composed of C, H, O, N, and S atoms; however, the structure is complicated. Some functional groups including -COOH, -OH, and -Oare contained, which endows HS with a heterogeneous mixture. Depending on their source, extraction, and analysis method, the typical molecular mass of HS is from a few hundred to several thousands, and the size range is from 1 nm to several hundred nanometers.3-5

The chemical and physical properties of HS have been studied by many researchers. On the basis of employing new analysis techniques (e.g., XPS, NMR, SEM, TEM, ESR), the physicochemical characteristics of HS have been revealed, such as chelation, compexation, adsorption, and ion-exchange capacity.6.7 It is worth noting that the chemical structure of HS is close to the source of the origin. The latest research indicates that HS are formed from relatively small molecules, which have similar characteristics, and are held together via supramolecular interactions.8

HS can be further subdivided depending on their solubility in acids and bases. The groupings are termed humic acid (HA), fulvic acid (FA), and humin.

(1) Humic acid (the part of HS that is soluble in dilute alkali

but insoluble in acidic solution); this characteristic gives a

- theoretical basis for precipitation and separation of HA fertilizer after desulfurization and denitrification.
- (2) Fulvic acid (the part of HS soluble in all pH conditions).
- (3) Humin (the part of HS insolube in alkali or acid).

HA can also be divided into "natural HA" and "artificial HA" Natural HA is further classified as soil HA, water HA, and coal HA. Artificial HA includes fermentation HA (FHA), chemical synthesis HA, and oxidized regenerated HA. Although the total amount of soil HA and water HA is very large, the percentage is very low. The main material of HA in industry is low-grade coal, such as peat, lignite, and weathered coal.

The total amount of HA runs up to one trillion tons, HA. partly bonded with potassium, calcium, and sodium, into potassium humate (HA-K), calcium humate (HA-Ca), and sodium humate (HA-Na) by their oxygen functional groups respectively, is the major component of low-rank coals (e.g., peat and lignite). 9-11 HA and HA-Na possess potential application in industry because of their thermostability, and no obvious destruction takes place even after exposing them under 250 °C for 60 min. 12

HA can be extracted from low quality coal with either sodium hydroxide (NaOH) or sodium carbonate (Na2CO3), and we can also get HA by the fermentation of waste biomass.1 To sum up, as a kind of natural adsorbent, HA has a wide range of origins, lower price, and special physical and chemical characteristics, which gives it the potential to control SO, NO. H2S, CO2, and heavy metals in exhaust gas.

2. PHYSICAL AND CHEMICAL BASIS OF HA IN WASTE GAS TREATMENT

2.1. Structural Characterization. Generally, the structural characterization of HA includes elemental analysis, measurement of oxygen-containing functional groups, measurement of molecular weight or distribution of molecular weight, and some other important features such as C/H, E4/E6 etc. HA is

Received: October 13, 2014 Revised: February 3, 2015 Published: February 4, 2015